A Comparative Study of Social Behavior in Irrigated and Rain-fed Areas: the Case of Bohol Irrigation Scheme, the Philippines

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
 53 views
of 18

Please download to get full document.

View again

Description
1. A Comparative Study of Social Behavior…
Share
Transcript
  • 1. A Comparative Study of Social Behavior inA Comparative Study of Social Behavior in Irrigated and Rain‐fed Areas: The Case of Bohol Irrigation Scheme, the Philippinesgat o Sc e e, t e pp esHogeun Park, Takuji W. Tsusaka, and Valerien O. Pede
  • 2. Introduction To investigate the connection between management ofl ( it ) i i ti d f ’ i l b h icanal (gravity) irrigation and farmers’ social behavior(1) Measures social behavior through behavioral gameexperimentsexperiments(2) Estimates the effects of irrigation, neighborhood,as well as individual characteristics. Combination of 1) behavioral game experiments and2) hierarchical linear modeling The availability of irrigation water in the village does The availability of irrigation water in the village doesnot only improve agricultural productivity but alsoenhances social relationship among farmers
  • 3. Overview of Bohol Irrigation Project• The Bohol Irrigation System, located in the northeastern part g y , pof Bohol Island about 50 km from the provincial capital city of Tagbilaran, began operation in May 2008• JICA did feasibility study in 1985 • San Miguel Ubay and Trinidad• San Miguel, Ubay, and Trinidad• Gravity irrigation system by Bayongan dam• Service Area 3,295ha• 17.5km of Main Canal 
  • 4. Structure of Dataset IRRI conducted• Agricultural and Socioeconomic Data (X)4 crop seasons from 2009 to 20104-season AverageBehavioral Game Results (Y)• Behavioral Game Results (Y)Sep. 2011290 randomly selected farmers290 randomly selected farmersIrrigated (N = 144) & Rain-fed (N = 146)
  • 5. Theoretical Framework• Behavioral game experiments are designed so as tog p gquantify participants’ social behavior under strategicsituations (Gintis 2003).• Employing dictator game and ultimatum game, which aredeveloped to explore altruistic and retaliating behaviors,developed to explore altruistic and retaliating behaviors,respectively
  • 6. Behavioral Game Experiments Dictator Game• This game is intended to elicit participants’ fairness,generosity, or altruism (Hoffman et al., 1996).??100 PHP is equivalent to 2.46 (USD) by Bloomberg currency data, as of 31 January 2013. The Philippines’ GDP per capita is $2,370 (2011) as per World Bank data. Given these exchange rate and GDP per capita, 100 PHP is considered sufficient to ensure incentive compatibility for the experiment purpose
  • 7. Behavioral Game Experiments Ultimatum Game• This game is interpreted as an indicator of the receiver’sretaliating behavior or unwillingness to tolerate the levelof distribution (Herbert et al 2003)of distribution (Herbert et al., 2003).?x x?x x100 PHP is equivalent to 2.46 (USD) by Bloomberg currency data, as of 31 January 2013. The Philippines’ GDP per capita is $2,370 (2011) as per World Bank data. Given these exchange rate and GDP per capita, 100 PHP is considered sufficient to ensure incentive compatibility for the experiment purpose
  • 8. Results for Behavioral Game ExperimentsType of Anonymous(1) Irrigated  (2) Rain‐fed  (3) t‐test for Type of AnonymousPartnerSample (N=131)Sample(N=114)mean difference|(1)‐(2)|Dictator GameSomeone in Sender’s Purok33.97 27.81 6.16**(20.59) (19.04) [0.015]Someone in Sender’s B32.06 27.11 4.96*(21 58) (18 28) [0 053]Barangay (21.58) (18.28) [0.053]Ultimatum GameSomeone in Sender’s Purok24.43 34.83 10.40***(15 15) (19 61) [0 000]Purok (15.15) (19.61) [0.000]Someone in Sender’s Barangay25.12 34.47 9.36***(16.47) (21.29) [0.000]
  • 9. HLM (Hierarchical Linear Modeling)• While ANOVA and OLS analyses are commonly used iny yquantitative assessments, care must be taken when thedata are nested (Raudenbush and Byrk 1993).• “Frog-Pond” Theory; Robinson(1950) the problem ofcontextual effectsReference: J. Kyle Roberts., An introduction to HLM with Rhttp://faculty.smu.edu/kyler/training/AERA_overheads.pdf
  • 10. HLM (Hierarchical Linear Modeling)• Our data set covers randomly selected 238 rice farmersywho reside in 3 municipalities and 18 barangays• Altruistic and retaliating behaviors arise from social• Altruistic and retaliating behaviors arise from socialatmosphere; we try to differentiate individual effectsfrom barangay effects• Employing HLM to account for the barangay-levelcharacteristics that are expected to affect individualplevel social behaviors
  • 11. Descriptive StatisticsLevel 1 (Household Level)i blVariable N Mean SD Min MaxAge 238 51.38 12.06 14 87Schooling Years 238 6.33 3.02 0 14Asset Holding (Log PhP) 238 10.61 1.09 6.21 13.31g ( g )Household Size 238 5.93 2.32 1 12.5Parcel Size (ha) 238 1.45 1.02 0.12 8.12Level 2 (Barangay Level)blVariable N Mean SD Min MaxIrrigation Dummy 18 0.61 0.5 0 1Age 18 51.3 4.5 43.56 61Schooling Years 18 6.37 0.93 4.46 8Schooling Years 8 6.37 0.93 4.46 8Asset Holding (Log PhP) 18 10.57 0.52 9.44 11.53Household Size 18 5.99 1.1 4.65 8.76Parcel Size (ha) 18 1.31 0.46 0.58 2.19
  • 12. Estimates for Intercept‐only ModelRandom CoefficientSt. Dev.VarianceComponentd.f. 2 p‐value ICCDictator GameIntercept 1, u0 5.830 33.989 17 38.817 0.002 0.085Level‐1, r 19.079 364.008Ultimatum GameINTRCPT1 u 6 668 44 463 17 49 456 <0 001 0 120INTRCPT1, u0 6.668 44.463 17 49.456 <0.001 0.120Level‐1, r 17.725 314.16312
  • 13. Estimates for level‐1 Equations[Level-1 Equation]β β ( ) β (S ) β ( ) β ( S ) βYij = β0j + β1j (Ageij) + β2j (Schooling Yearsij) + β3j (Assetij) + β4j (Household Sizeij) + β5j(Parcel Sizeij) + rij[Level-2 Equation]β β β β β ββ0j = γ00 + u0j, β1j = γ10 + u1j, β2j = γ20 + u2j, β3j = γ30 + u3j, β4j = γ40 + u4j, β5j = γ50 + u5jGameTypeβ0(Intercept 1)AgeSchoolingYearsAssetHouseholdSizeParcelSizeType (Intercept 1) Years Size SizeDictator 28.789*** -0.268*** 0.109 -0.658 0.143 0.3752Ultimatum 28.117*** -0.067 -0.578* -1.984* -0.427 0.797*** p < 0.01, * p < 0.10123
  • 14. Estimates for level‐2 EquationsYij = γ00 + γ01 (Irrigation Dummyj) + γ02 (Agej) + γ03 (Schooling Yearj) + γ04 (Assetj) +γ05 (Household Sizej) + γ06 (Parcel Sizej) + γ10 (Ageij) + γ20 (Schooling Yearij) +γ30 (Assetij) + γ40 (Household Sizeij) + γ50 (Parcel Sizeij) + u0j + u1j (Ageij) + u2j(Schooling yearij) + u3j (Assetij) + u4j (Household Sizeij) + u5j (Parcel Sizeij)+ rijGameTypeγ00(Intercept 2)IrrigationDummyAgeSchoolingYearsAssetHouseholdSizeParcelSizeDictator 23.387*** 9.053* 0.166 -0.259 4.348* -0.724 6.087Ultimatum 39 092*** -14 012*** -0 697** -1 124 -8 585*** 0 885 -4 964Ultimatum 39.092 -14.012 -0.697 -1.124 -8.585 0.885 -4.964*** p < 0.01, ** p <0.05, * p < 0.10 1 23
  • 15. Concluding Remarks• The result is highly suggestive of the significant socialg y gg geffects of canal irrigation schemes.• The positive effect on altruism and the negative effect onThe positive effect on altruism and the negative effect onretaliation indicate that the type of social interactionspromoted by the necessity for collective irrigationmanagement leads to inducing the accumulation ofmanagement leads to inducing the accumulation of“good” social behavior among farmers.O l t lid ti th i i ti ff t i t id• One clue to validating the irrigation effect is to considerthe existence of TSAs (turnout service associations)in the irrigated communitiesg
  • 16. Concluding Remarks• TSA- private canal construction- purchasing machineryproviding micro credit- providing micro creditCompared with the rain-fed, irrigated farmers ared i i d diexposed to more opportunities to meet and discusspublic arrangements with their neighbors• Dual role: to boost the rural economy through increased production, and to accumulate social capital among farmersand to accumulate social capital among farmers.
  • 17. Anecdotal Information• Cultivated cassava before irrigation project• Cultivating Hybrid Rice twice a year• Three children- Crop scienceV t i- Veterinary- Agronomy• Promoting children back to village for( Inday Salaum )• Promoting children back to village foragriculture• Several neighbors’ children already backto village for their career( Inday Salaum ) to village for their career• Irrigation and modern agricultural technology cang g gyprevent brain drain from rural areas.
  • 18. Limitation• Our behavioral game experiments were conducted ing p2011 which was after the construction of irrigation. Thissurvey structure prevents us from formulating adifference in difference estimator that ensures a moredifference-in-difference estimator that ensures a moreproper impact assessment.
  • Related Search
    We Need Your Support
    Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

    Thanks to everyone for your continued support.

    No, Thanks