Quantum Teleportation Leaps Forward

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
of 2

Please download to get full document.

View again

  Quantum teleportation leaps forwardTwo teams improve long-distance transmission of information about particlesBy Alexandra WitzeWeb edition: May 31, 2012Print edition: June 30, 2012; Vol.181 #13 (p. 10)Quantum information has leapt through the air about 100 kilometers or more in two new experiments, farther and with greater fidelity than ever before. The research brings truly long-distance quantum communication networks, in which satellites could beam encrypted information around the globe, closer to reality.Both studies involve quantum teleportation, which transports the quantum state of one particle onto another. This Star Trek  like feat is possible because of a phenomenon called entanglement, in which pairs of particles become linked in such away that measuring a certain property of one instantly determines the same property for the other, even if separated by large distances.In teleportation, two people  physicists call them Alice and Bob  share one each of a pair of entangled particles. Alice measures a property on her particle and sends Bob a note, through regular channels, about what she did. Bob then knows how to alter his own particle to match Alice  s. Bob  s particle then possesses the information that had been contained in Alice  s, which was obliterated by her measurement. Thus the information has been  teleported  from Alice  s lab to Bob  s.Physicists first teleported quantum information in 1997 using a single pair of entangled photons, or particles of light. Since then researchers have slowly upped the ante, teleporting with larger groups of photons, over longer distances andsometimes using atoms as the entangled particles.In 2007 Anton Zeilinger of the University of Vienna and his colleagues set a distance record by using a pair of entangled photons to transmit a piece of quantuminformation over 143 kilometers, between two of the Canary Islands. In new work, posted online May 17 at arXiv.org, the team reports a cleaner and more robustversion of the same experiment using multiple entangled photons.This time around, the scientists added a phase shift into the laser beams that made the final measurement cleaner and easier to pick out from background signals. The technique, called  active feed-forward,  is  an essential ingredient in future applications such as communication between quantum computers,  Zeilinger and his colleagues wrote. Team members declined interviews because the paper is not yet published.  Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation,  they wrote.In the second experiment, Chinese researchers entangled many photons together and teleported information 97 kilometers across a lake in China. That  s two orders of magnitude farther than any other multiphoton teleportation experiment, say Jian-Wei Pan of the University of Science and Technology of China in Shanghai and his colleagues. The work appeared online May 9 on arXiv.org.Pan  s team also developed a way to track moving teleportation signals more accurately, which again could help make the final result more robust.  Our results show that even with high-loss ground to satellite uplink channels, quantum teleportation can be realized,  the scientists wrote.  Both Zeilinger and Pan next want to teleport information to a satellite in low-earth orbit. That distance is about three times that already accomplished in theCanary Islands, but because there are fewer air molecules to interfere with thesignals at higher altitudes it may be easier to do.CitationsJ. Yin et al. Teleporting independent qubits through a 97 km free-space channel.arXiv.org:1205.2024. Posted May 9, 2012.[Go to]X. Ma et al. Quantum teleportation using active feed-forward between two CanaryIslands. arXiv:1205.3909. Posted May 17, 2012.[Go to]R. Ursin et al. Entanglement-based quantum communication over 144 km. Nature Physics. Vol. 3, July 2007, p. 481. doi:10.1038/nphys629.[Go to]Suggested ReadingScience News special issue: quantum[Go to]P. Barry. Quantum information teleported between distant atoms. Science News Online, January 22, 2009.[Go to]P. Weiss. First teleportation between light and matter. Science News. Vol. 170,November 4, 2006, p. 301.[Go to]P. Weiss. Teleporting matter  s traits: beaming information quantum-style. ScienceNews. Vol. 165, June 19, 2004, p. 387.[Go to]source: http://www.sciencenews.org/view/generic/id/341197/description/Quantum_teleportation_leaps_forward
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!